341 research outputs found

    Interview with D. A. Powell

    Get PDF

    CH2D+, the Search for the Holy Grail

    Full text link
    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.Comment: 25 pages, 6 Figures Accepted in Journal of Physical Chemistry A. "Oka Festschrift: Celebrating 45 years of Astrochemistry

    HCOOCH3 as a probe of temperature and structure of Orion-KL

    Full text link
    We studied the O-bearing molecule HCOOCH3 to characterize the physical conditions of the different molecular source components in Orion-KL. We identify 28 methyl formate emission peaks throughout the 50" field of observations. The two strongest peaks are in the Compact Ridge (MF1) and in the SouthWest of the Hot Core (MF2). Spectral confusion is still prevailing as half of the expected transitions are blended over the region. Assuming that the transitions are thermalized, we derive the temperature at the five main emission peaks. At the MF1 position we find a temperature of 80K in a 1.8"x0.8" beam size and 120K on a larger scale (3.6" x2.2"), suggesting an external source of heating, whereas the temperature is about 130K at the MF2 position on both scales. Transitions of HCOOCH3 in vt=1 are detected as well and the good agreement of the positions on the rotational diagrams between the vt=0 and the vt=1 transitions suggests a similar temperature. The velocity of the gas is between 7.5 and 8.0km/s depending on the positions and column density peaks vary from 1.6x10^16 to 1.6x10^17cm^-2. A second velocity component is observed around 9-10 km/s in a North-South structure stretching from the Compact Ridge up to the BN object; this component is warmer at the MF1 peak. The two other C2H4O2 isomers are not detected and the derived upper limit for the column density is <3x10^14cm^-2 for glycolaldehyde and <2x10^15cm^-2 for acetic acid. From the 223GHz continuum map, we identify several dust clumps with associated gas masses in the range 0.8 to 5.8Msun. Assuming that the HCOOCH3 is spatially distributed as the dust, we find relative abundances of HCOOCH3 in the range <0.1x10^-8 to 5.2x10^-8. We suggest a relation between the methyl formate distribution and shocks as traced by 2.12 mum H2 emission.Comment: Accepted for publication in A&

    ALMA and VLA Observations: Evidence for Ongoing Low-mass Star Formation near Sgr A*

    Get PDF
    Using the VLA, we recently detected a large number of protoplanetary disk (proplyd) candidates lying within a couple of light years of the massive black hole Sgr A*. The bow-shock appearance of proplyd candidates point toward the young massive stars located near Sgr A*. Similar to Orion proplyds, the strong UV radiation from the cluster of massive stars at the Galactic center is expected to photoevaporate and photoionize the circumstellar disks around young, low mass stars, thus allowing detection of the ionized outflows from the photoionized layer surrounding cool and dense gaseous disks. To confirm this picture, ALMA observations detect millimeter emission at 226 GHz from five proplyd candidates that had been detected at 44 and 34 GHz with the VLA. We present the derived disk masses for four sources as a function of the assumed dust temperature. The mass of protoplanetary disks from cool dust emission ranges between 0.03 -- 0.05 solar mass. These estimates are consistent with the disk masses found in star forming sites in the Galaxy. These measurements show the presence of on-going star formation with the implication that gas clouds can survive near Sgr A* and the relative importance of high vs low-mass star formation in the strong tidal and radiation fields of the Galactic center.Comment: 13 pages, 3 figures, MNRAS (in press

    Imaging the cool gas, dust, star formation, and AGN in the first galaxies

    Get PDF
    When, and how, did the first galaxies and supermassive black holes (SMBH) form, and how did they reionization the Universe? First galaxy formation and cosmic reionization are among the last frontiers in studies of cosmic structure formation. We delineate the detailed astrophysical probes of early galaxy and SMBH formation afforded by observations at centimeter through submillimeter wavelengths. These observations include studies of the molecular gas (= the fuel for star formation in galaxies), atomic fine structure lines (= the dominant ISM gas coolant), thermal dust continuum emission (= an ideal star formation rate estimator), and radio continuum emission from star formation and relativistic jets. High resolution spectroscopic imaging can be used to study galaxy dynamics and star formation on sub-kpc scales. These cm and mm observations are the necessary compliment to near-IR observations, which probe the stars and ionized gas, and X-ray observations, which reveal the AGN. Together, a suite of revolutionary observatories planned for the next decade from centimeter to X-ray wavelengths will provide the requisite panchromatic view of the complex processes involved in the formation of the first generation of galaxies and SMBHs, and cosmic reionization.Comment: 8 pages total. White paper submitted to the Astro 2010 Decadal Surve

    Far-infrared and molecular line observations of Lynds 183 - studies of cold gas and dust

    Get PDF
    We have mapped the dark cloud L183 in the far-infrared at 100um and 200um with the ISOPHOT photometer aboard the ISO satellite. The observations make it possible for the first time to study the properties of the large dust grains in L183 without confusion from smaller grains. The observations show clear colour temperature variations which are likely to be caused by changes in the emission properties of the dust particles. In the cloud core the far-infrared colour temperature drops below 12K. The data allow a new determination of the cloud mass and the mass distribution. The mass within a radius of 10 arcmin from the cloud centre is 25 Msun. We have mapped the cloud in several molecular lines including DCO+(2-1) and H13CO+(1-0). These species are believed to be tracers of cold and dense molecular material and we detect a strong anticorrelation between the DCO+ emission and the dust colour temperatures. In particular, the DCO+(2-1) emission is not detected towards the maximum of the 100um emission where the colour temperature rises above 15K. The H13CO+ emission follows the DCO+ distribution but CO isotopes show strong emission even towards the 100um peak. A comparison of the DCO+ and C18O maps shows sharp variations in the relative intensities of the species. Morphologically the 200um dust emission traces the distribution of dense molecular material as seen e.g. in C18O lines. A comparison with dust column density shows that C18O is depleted by a factor of 1.5 in the cloud core. We present results of R- and B-band starcounts. The extinction is much better correlated with the 200um than with the 100um emission. Based on the 200um correlation at low extinction values we deduce a value of ~17mag for the visual extinction towards the cloud centre.Comment: to be published in A&
    corecore